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InTRODUCTION
Luria & Delbruck (1943) have shown that if a culture of some hundreds or thousands of
millions of Bacterium coli, grown from a single cell, is plated out on a nutrient medium
impregnated with a bacteriophage to which the strain of coli is sensitive, the vast majority
of the bacteria are lysed, but a few give rise to colonies. These colonies contain only
bacteria resistant to the bacteriophage, and give rise only to resistant bacteria on further
subcultivation. Evidently hereditary variations or mutations can occur in bacteria.
Numerous' other examples are known of mutations in bacteria, affecting fermentation
reactions (e.g.” Lewis, 1934), resistance to chemicals (e.g. Stewart, 1947 ), to antibiotics
_(e.g. Demerec, 1945), or to radiation (Witkin, 1946). R

The demonstration of phage-resistant mutants necessarily involves the exposing of the
bacteria to the phage, and it is not immediately obvious whether the mutation to phage
resistance occurs spontaneously during the growth of the culture, and is merely made
apparent by subsequently testing with phage, or whether the mutation is induced by the
phage and does not occur until the bacteria are brought into contact with phage. Most
experiments on bacterial variation have left open the two alternatives of spontaneous
mutation on the one hand, and induced mutation or adaptation on the other, and the
interpretation adopted has usually been determined by the previous training of the
individual worker rather than by any compelling evidence provided by the experiments.

Luria and Delbruck, however, in their paper, ‘described a method by which a decision
between the two alternative explanations may be reached, and concluded that the
acquirement of resistance to phage is a spontaneous mutation which occurs during the
growth of the culture and prior to its treatment with phage. Demerec (1945) and Witkin
(1946) have applied the same method to mutants resistant to penicillin and to X-rays
respectively, and have concluded that*these changes also are -spontaneous mutations
occurring independently of the penicillin or of the radiation respectively.

The principle of Luria and Delbruck’s test is as follows. A culture of (say) 109 bacteria
is divided into (say) ten equal portions which are separately tested for phage-resistant
organisms by plating out on a phage-impregnated medium. A small number is found in
each of the ten portions, and the numbers are found experimentally to be distributed with
a variance approximately equal to the mean. This result is not surprising on either hypo-
thesis. On the spontaneous mutation theory, we suppose that mutations to phage
resistance occurred from time to time during the growth of the culture. All the bacteria
produced by subsequent divisions of a mutant hacterium were similarly phage resistant.
Thus the culture of 109 bacteria contained a certain number of phage-resistant bacteria,

* [Note by C. A. C. A few days before Dr Lea’s untimely death in June 1947, the manuscript and the caleula-
tions reported here had just been completed. It was Dr Lea’s intention to make further. experiments more
suitable to a test of the theory outlined in this paper. These experiments cannot now be made, but it has been
thought wise to publish the theory and numerical tables because of their value to other investigators.]
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being either bacteria which had recently undergone mutation, or bacteria derived from

the division of mutants which arose earlier in the growth of the culture. When the culture

was divided into ten equal portions the phage-resistant organisms were distributed
at random between the ten portions. We may expect, therefore, the numbers in the
different portions to fall in a multinomial distribution with variance nearly equal to the

mean. ' .

On the adaptation or induced mutation theory, it is supposed that no phage-resistant
bacteria arose during the growth of the culture. The ten portions, at the time of plating
out, each contained 108 normal bacteria and no resistant bacteria. On being brought into
contact with the phage most were lysed, but a few were able to adapt themselves to the
phage (or the phage-induced mutations in them). The probability of this process is very
small, but was presumably the same for all the bacteria. On this theory, therefore, we
expect the number of resistant colonies on the ten parallel plates to be distributed in a
Poisson distribution with variance equal to the mean. Either theory is thus capable of
accounting for the experimental variance, and this experiment alone does not make
possible a decision between the two theories.

A second experiment is now made in which (say) ten cultures, of (say) 108 hacteria are
tested for phage-resistant organisms. On the adaptation or induced-mutation theory this
experiment is not essentially different from the preceding one, and we again cxpect the
numbers of phage-resistant colonies on the ten test plates to be distributed in a Poisson
distribution with variance equal to the mean. For, on this theory, the phage-resistant
mutants do not appear until the bacteria are plated out on the phage-impregnated medium,
and there can be no relevant difference between a culture of 10° bacteria divided into ten
equal portions, and ten separately grown cultures of 108 hacteria.

In practice a very different result is obtained: the distribution obtained is much wider
than in the former experiment, and has a variance many times—perhaps fifty times—
the mean. ' :

On the spontaneous mutation hypothesis a very wide distribution of the number of
phage-resistant bacteria in parallel cultures is to be expected. The reason is that not only
do the parallel cultures differ in the numbers of mutations which have occurred, but also,
and much more importantly, they differ in the stages at which the mutations occurred.
If a mutation occurs towards the end of the growth of a culture, it will give rise to one
phage-resistant organism, but if it oceurs early in the growth, say when the culture is only
one-hundredth of its final size, it will give rise to a large number of phage-resistant
organisms. Thus even in cultures in-which equal numbers of mutations have occurred, the
numbers of phage-resistant organisins will usually be widely different.

It is evident, therefore, that the hypothesis that spontaneous mutation to phage
resistance occurs during the growth of the culture before it is brought into contact with
the phage is in qualitative agreement with the experimental result, while the alternative

" hypothesis of mutation induced by the phage, or adaptation of the bacterium to the phage,
is not. Luria and Delbruck’s method thus provides, for the first time, a clear means of
distinguishing between the two hypotheses.

As left by Luria and Delbruck, the method is a qualitative one, since they do not derive
the shape of the distribution to be expected on the spontaneous mutation theory. They do
derive expressions for the mean and variance of the distribution, but as they point out, on
account of the extreme skewness of the distribution, the mean and variance are very
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inefficient statistics for estimating the parameters of the distribution from experimental
results, or for testing the agreement of experiment and theory.

The purpose of the presentpaper is to extend Luria and Delbruck’s method by caleulating
the form of the distribution of numbers of mutants in parallel cultures to be expected on
the spontaneous mutation theory, so making the test of the applicability of the spontaneous
mutation theory a quantitative test. Statistically efficient methods of deducing the
mutation rate from experimental observations are also discussed.

Ter pISTRIBUTION
First method
During the active growth of a culture, the number of organisms increases as an exponential
function of the time, and may be represented as
n =Bl (1)
there being one organism at time ¢=0. ‘
Thus dn = fBn dt. (2)

If o is the mutation rate, defined by the relation that o d¢ is the probability that an
individual phage-sensitive organism shall undergo mutation to phage resistance in time dt,
nadt is the mean number of mutations which oceur in time dz. (Strictly, since n is the total
number of organisms, we should subtract from n in this formula the number of resisbant
organisms, but in practice the number of mutant organisms in a culbure is a minute
fraction of the total number.) Hence the mean number (m) of mutations which will have
occurred in the culture by the time it has grown to size n at time ¢ is

4 o [ o
n d{:»f dn=-(n—1).
f B A

0 1

Since at all relevant times n much exceeds unity, we may write
oL .
m=pn (3)

for the mean number of mutations in the culture by the time it has attained size n. The
mean number of mutations which oceur while the culture grows from =, to n, organisms

is evidently
m (w) . ‘ 4
7 ‘ :

I£ it should happen that the mutation rate o and the growth rate 8 arve equally affected
by factors such as nutritional conditions and density of population which affect B, then
the mutation rate per generation, though not per wnit time, will be independent of these
factors, and o/B, which may be regarded as the probability of mutation per division, will
be constant even though « and f are not. Under these conditions equations (3) and (4)
can be derived without the assumption of exponential growth.

We must distinguish between the number of mutations which have occurred, and the
number of mutants, the latter being derived not only by mutation of the normal bacteria
but also by division of bacteria which have suffered mutation earlier, If » (r=m) is the
number of mutants in the culbure at a given time, and if we assume that the division rate of
the mutant is the same as that of the normal bacteria, then rAdt=rdn/n is the probability
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that one of the mutants shall divide in time d¢. Similarly, (r—1) dn/n is the probability
that one of the mutants shall divide in time d¢ in a culture containing (r— 1) mutants.
Let p, (a function of n) be the probability that a culture of n bacteria grown from
a single bacterium at t=0 shall have r mutants (i.e. of a large number of cultures of
n bacteria, a proportion p, of cultures will have » mutants).
Consider the proportion p,+ {l dn of cultures which, at-time ¢-+df, when the culture
size is n-+dn, have » mutants. These will be derived from:
(@) cultures which, at time ¢, had # — 1 mutants and in which a mutation occurred in the
interval dt;
. (b) cultures which, at time ¢, had » —1 mutants and in which a mutant divided in the
interval di;
(¢) cultures Whlch at time #, h’l d » mutants and in which neither mutation nor division
of a mutant occurred in the interval dt;
providing that the interval d¢ is small enough. For («/f) dn and rdn/n to be much less than
unity, the possibility of more than one of the rare events mutation and division of a
mutant in the interval d¢ can be net)lected We see, therefore, that

dp, , o, dn c_lﬁ,}
pr-!—% dn=mp,_4 {—B(ln+(1 —1)—;} D, {1 Bc&n el

. cly) ' 7 _ a r—1
80 thatb T /3 Pt — D=0,y (734— p )
Malking, from (3), the substitution m = or/,B) n, we have
dp, -1
_ 5
am TP + p =P (l o ) : ®)
Multiplying by the integrating factor ¢ we have »
dg, v r—1 . ‘ '
Z[’)_;;,_*“?-?;/ %'—%'—1 (1 4_7)3 Whel(.}’ 4 =€" Py (6)

Now m is the mean number of mutations which have occurred in a culture by the time it con-
tains n bacteria. Therefore e, the first term of the Poisson distribubion, is the probability
P that no mutation shall have occurred. Thus gy =¢"p,=1 for all values of m. LV1dently
initially, when m =0, ¢,=0 for all »>0.

Starting from ¢,=1 we can calculate ¢, ¢a, ¢5, etc. in succession from the differential
equation (6). Thus:

dg, 1

g =1 whence ¢, =1m;

dm ' mtt 7 noe g =z

dgs 2 1

Ar L —im 1+ = whenece ¢, =im 4 im?;
dm TmBTe m)’ =% L
dc_]d

2 . F
e - B Loy 4 Ly 2 o oLy 4 L2y 13
(lm pon q3 (Fm+Lm?) (1 +m ,  whence gg=<5m +5m? +Fgm®.

Evidently g, is a polynomial in m, with powers mngimT from 1 to r.

r 7
Writing =50, ——O1 »m=+C + +C’, , ~—L| (7N

=1 J,Ij 2)2|
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: dg. T “pd-1
we have &_ 5 ¢

am ™~ G- ®)
Inserting (7) and (8) in (6), and equating coefficients of m/~1/j1, we have
(J+7) Cg,p=1C1pa+t(r=1) C; 4. 9)

With this recurrence relation a table of C; , may be drawn up. Such a table, for values
of »< 10, is given in the Appendix.
. ) I o :
Bvidently Cy = PYFY G =2 (10)

From (6) and (7), po=e", and for r =1

r an2 ’ 7
pr= 2 Uy, (e—’” )?n) Cy, (emmm)+ 0y, ( “’"’—%) +..+0,, (6‘""%). (11)

j=1

4 generating function for p,

Define a function T, m)y=gqy+q z-+q, 7}’* = 2 g (12)
=0
of . of dq,
/ : ==y 1g, s =Nt 2
We have . Zra—lg, and . Z . (13)

Multiplying equation ( ) by #" and summing for all v we have

2
X o ' L S g, =z X0 g +§;—L r—1) 2" 2q,,

clm m
. Uy
or, using (13), 2 m om =af+ maw’
op 0 _ '
whence - om m( m)%—w, (14)

where* ¢ =log f. This equation is satisfied by

¢ (@, m)=m (x)
providing btz (l—a) ' =,

ie. § + -

Multiplying by z/(1 —z) and integmtlng

T 1
- z/;:m4—log (1—x)—1,

the integration constant —1 being introduced since when =0, f=g,=1, so that ¢=
and so =0, Thus

p=1+-""log (1—0)=" + g%+3ml+...,
whence f: el — g (1—aym (1—:0)/:0’
80 that p,=¢ "¢, is the coefficient of " in the expansion in ascending powers of & of
: x wz
(1 —gym =iz op of ¢ exp [I)b (1 5tast )} (15)

* log means natural logaribhm to base e=2-718.., throughout this paper.
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. : x o oa? m x a? 2 m?
o of L) — —m o —m o
ie. of e +(1‘2 F2.3+...)6 1!+(1.2—I 2A3+‘...) e gyt (16)
- Comparing with (11), it is evident that C; , is the coefficient of 2" in the expansion of
x P i ,
(m”i‘ﬁ-}-...) . (17) .

It will be shown later that C; , is the probability that a culture in which exactly j muta-
tions have occurred shall contain » mutants. If we define

”
D;,= 2, Cips
Pr=j

D; , is the probability that a culture in which exactly j mutations have occurred shall
have <7 mutants. Summing equation (9) over all » between j and 7 leads to the following
recurrence relation between the D, '

gy
(’)' _’_j) Gj, ” :j (Dj—l, -1 Dy’, 7'—1): (18)
or (r+5) Dy =Dy g +5D; 4 4 g (19)

Equation (18) is useful as an arithmetical check during the computation of the Cy . by
means of equation (9).
It is sometimes convenient to discuss P, defined as

P.=%p,, (20)
<=0

P, being the probability that a culture shall contain 0, 1,2, ..., or » mutants, i.e. any number
of mutants up to . Py=e™; P,=1 for all » at m=0. The following equations can be
readily deduced by summing (5) and (11) over all » between 0 and »:

B p (1 +1'-> =P, (1 +f—), , ‘ (21)
dm m m
r md
PT:e—m—}« Z _Dg » (G“m ".T) . (22)
j=1 " J:

; Second method

An alternative method of calculating p,, the probability of a culture having r mutants,
is instructive. A mutant appearing by mutation any time after the culture has passed
the size §n will not have time to divide by the time the culture size reaches n, and will
therefore contribute 1 to the final complement of mutants. A mutant appearing by
mutation during the period in which the culture grows from n to in will have time to
divide once only and will therefore contribute 2 mutants to the final complement. A
mutant appearing by mutation in the period in which the culture grows from in to in will
have time to divide twice only and will contribute 4 mutants to the final complement,
and so on. '

Confining attention for the moment to all those cultures in which exactly one mutation
occurs during the growth of the culture from one organism to # organisms, in one-half of
the cultures the mutation will occur while the culture is growing from 4 o n, in one-quarter
of the cultures the mutation will occur while the culture is growing from n to in, and so
on (compare equation (4)). Or, in other words, in one-half of these cultures the mutation
ocours ab such a time that it gives rise finally to 1 mutant, in one- quarter of the cultures
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the mutation occurs at such a time that it gives rise finally to 2 mutants, in one-eighth at
such a time that it gives rise to 4 mutants, and so on.

According to this argument, a mutation is necessarily represented, by the time the
culture has reached size n, by a clone of 1 or 2 or 4 or 8, etc., organisms, there being no
intermediate numbers. This would be so if divisions in a clone were synchronous. It is
probably true that clones of 3, 5 or 7 cells will be less common than clones of 2, 4 or 8 cells
(cp. Adolph & Bayne-Jones, 1932), but rather than make the extreme assumption that
only integral powers of 2 are to be considered it is probably preferable to neglect this fact
and to assume that the frequency of clones of different sizes is a smooth function of
clone size.

A clone which, by time ¢, contains » mutants will have originated when the number of
bacteria in the culture was about n/v. We thus replace the subdivision of the growth of the
culture into generations by subdivision into intervals in which the population increased
from §n to n, from §n to §n, from in to In, and so on, and suppose that a mutation which
occurred while the population increased from n/(v +1) to n/v is, by the time the population
has grown to n, represented by a clone of v mutants. Now, of those cultures in which
exactly one mutation has occurred, the proportion in which the mutation occurred while
1
v_ﬁ) v (v+1)
be represented as the coefficient of #” in the generating function

the culture grew from n/(v+1) to n/v is (1 - (cp. equatlon (4)). This may
14

x = x? i
| 23
12723ttt (23)

Considering now all those cultures in which exactly j independent mutations occurred, .
the fraction of cultures in which the final number of mutants is » is, from (23), evidently
the coefficient of #” in the expansion of

x ot aP i
(1 T2 33 54" )
Now if m is the mean number of mutations per culture, the proportion of cultures in

‘ i . .
which exactly j mutations occurs is e % Thus the proportion of all cultures in which the

final number of mutants is 7 is the coefficient of 2" in the expansion of
© €T 2 x3 i m’j

-

Z(1 stoataat )e ik

Thus p,, the probability of a culture having r mutants, m being the mean number of
mutations per culture, is the coefficient of 2" in the expansion of

e exp 1.2°2.3 7
in agreement with equation (15).

Arithmetical procedure
By means of the recurrence relation (9) and the boundary values (10) a table of values
of C; , has been computed for all (integral) values of j from 1 to 36 and of 7 from 1 to 64,
subject to 7 >7. Equation (18) was employed as a check on the arithmetic at j=63. C;,
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is the probability that a culture in which exactly s mutations have occurred shall contain
r mutants. In practice when comparing the theoretical and experimental distvibutions the
digtributions will always be grouped. For economy of space, therefore, we do not publish
the full table of U, but give in Table 1 grouped values for r=1, 2, 3, 4, 5-8, 9-16,
17-32, 33-64 and > 64. '

Table 1. C;

Jar
C; , is the probability that a culture in which exactly 4 mutations have oceurred shall have » mutants (»= 7).
i RS . A . Y i ¢ .
TFor values of » greater than 2, the values of C'; , have been grouped. Thus the numbers in the column headed
& o s g,

=S
‘17-327 are values of % ('; .. Sce also the Appendix for certain other values of C, ,.
7 7 ’

==l

N 1 2 34 5-8 9-16 17-32 33-64 >64
1 05000 01667 01333 00880 00528  0-0285 00140 00154
2 — 02500  0-2778  0-2118  0-1272  0-0671  0-0335 00825
3 — 0-2500  0-3100 02161 01161 00563  0-0515
4 — — 0-0625  0-3093 02986 01735  0-0834  0-0726
3 _ —_ 0-2060 03479 02353  0-1149  0-0960
6 — —_ — 00885  0-3445 02049 01504 01216
7 — —_ — 00260  0-2007  0-34d1  0-1804  0-1497
8 — — — 00039 0-2100 03753  0-2305  0-1804
9 — — — — 01312 03830  0-2721  0-2137
10 —_ —_ — — 00718 03665  0-3122  0-2495
11 — —_ — — 00342 03204  0-3486  0-2878
12 — —_ — — 00138 0-2790  0-3789  0-3284
13 — — —_ _ 00045 02234 04010  0-3711
14 — — — — 00011 01698 04135  0-4157
15 —_ — — — 00002 01228 04155  0-4616
16 —_— — — — 00000  0-0846 04071  0-5084
17 — — — — — 00553 03891  0-5555
18 — — — — — 0-0343  0-3633  0:6024
19 — — — — — 00200  0-8315  0-6485
20 —_— — — — - 0-0109  0-2061  0-6930
21 — — — — — 00055  0-2391  0-7354
22 = — — — —_ 00026  0-2222  0-7752
23 — — —_ — — 0-0011  0-1871 08118
24 — —_ — — — 00004  0-1546  0-8450
25 — — — — — 0-0001  0-1254  0-8745
26 — — — — — 0-0000  0-0998  0-9001
27 — — — — — — 00779 0-9221
28 — —_ — e 0-0596  0-9404
20 — e — - — — 0-0447  0-9553
30 — — — — — — 00327  0-9673
31 — — — —_— — — 00234 0-9766
32 — — — — — — 0-0164  0-9836
33 — — — —_ — —_ 00111 0-9889
34 — — —_ — — — 0-0074 09926
35 — — — —_ — — 0-0048  0-9952
36 — —_ — — — — 00030 09970

P, 18 the probability that a culture of such a size that the meen number of mutations is
: r mi
_ : , , - L ~ .
m shall contain » mutants. p,=e and for r>1, p,= % C;, (6”’”’7‘— . For any given
: Pp= 2 Ly, ;1

F=1 .
value of m, p, can he calculated with the aid of the table of C; ., for the same groupings

; ) . . .. . . . oml .
of 7. The calculation is facilitated if a table of Poisson coefficients 6“'”.—] 1s available
j!

(Molina, 1942). In Table 2 values of p, arve given for a number of values of m from 0-05
to 15. ,
The figures in Tables 1, 2 and 4 are liable to occasional rounding errors of one unit in
the last decimal place, -
Journ. of Genetics 49 ’ 19
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LIvMrriNG FORM OF DISTRIBUTION FOR LARGE NUMBERS ,
Table 2 provides the means of testing the agreement between theoretical and experimental
distributions in experiments in which the mean number of mutations per culture is 15 or
fewer, and in which a minority of the cultures have more than 64 mutants. To extend
Tables 1 and 2 by use of the recurrence relation (9) to cover experiments in which the
mean number of mutations per culture considerably exceeds 15, and to subdivide the class

Table 2. p,

Dy 18 the probability that a cultuve shall have » mubants, the average number of mutations which have oceurred
per culbure being m. Ifor values of » greater than 2, the values of P, have been grouped. Thus the numbers
=82

in the column headed ¢17-32° are values of % Py
r=17

mN\r 0 1 2 34 5-8 9-16 17-32  33-64 > 64
005 09512 0-0283 00082 00067 00045 00026 00014 00008  0-0008

0-10 0-9048 0-0452 0-0162 0-0134 0-0090 0-0053 0-0029 0-0015 0-0015
0-15 0-8607 0-0646 0-0239 0-0200 0-0137 0-0081 0-0044: 0-0023 0-0023
0-20 0-8187 0-0819 0-0314 0-0267 0-0184: 0-0109 0-0059 0-0031 0-0031
0-25 0-7788 0-0974 0-0385 0-0332 0-0231 0-0138 0:0074: 0-0038 0-0039
0-30 07408 01111 0-0454 0-0397 0-0279 0-0167 0-0090 00046 0-0047
0-35 07047 0-1233 0-0519 0-0462 0-0328 0-0196 0-0106 0-0055 0-0055
0-40 0-6703 0-1341 0-0581 0-0525 0-0376 0-0226 0-0122 0-0063  0-0063
045 0-6376 0-1435 0-0640 0-0587 0-0425 0-0257 0-0139 . 0-0071 0-0071
0-50 0-6065 0-1516 0-0695 0-0648 0-0475 0-0288 0-0155 0-0079 0-0079
055 0-5769 0-1587 0-0747 0-0707 0-0524 0-0319 0-0172 0-0088 0-0087
0-60 0-5488 0-1646 0-0796 0-0765 0-0573 0-0351 0-0189 0-0096 0-0096
0-65 05220 0-1697 0-0841 0-0821 0-0622 0-0383 0-0207 0:0105 0-0104

0-70 " 0-4966 0-1738 0-0884 0-0876 0-0672 0:0415  0-0224 0-0114 0-0112
075 0-4724 0:1771 0-0923 0-0928 0-0721 0-0448 0:0242 00123 0-0120
0-80 0-4493 0-1797 0-0959 0-0979 0-0769 0-0482 0-0260 0-0132 0-0129
0-85 0-4274 0-1817 0-0992 0-1028 0-0818 0-0515 0-0279 0-0141 0-0137
0-90 0-4066 0-1830 0-1022 0-1076 0-0866 0-0549 0-0297 0-0150 0-0146
0-95 0-3867 0-1837 0-1049 01121 0-0914: 0-0583 0:0316 0-0159 0-0154
10 0-3679 0-1839 0-1073 0:1164 0-0961 0-0617 0-0335 0-0168 0-0163
1-2 0-3012 0-1807 0-1145 01317 0-1144 0-0757 0-0414 0-0207 0-0198
1.4 0-2466 0-1726 0-1180 0-1438 01316 0-0899 0-0496 0-0247 0-0233
1-6 0-2019 0:1615 01184 0-1528 0-1473 01041 0-0581 0-0288 0:0270
1-8 0-1653 0-1488 0-1165 0-1587 0-1615 01184 0-0670 00332 0-0307
2:0 0-1353 0-1353 0-1128 0:1620 0-1738 0-1324 0-0761 0-0377 0-0345
2-2 0-1108 = 0-1219 0-1077 0-1629 0-1844 0-1462 0-0855 0-0423 0-0383
24 0-0907 © . 0-1089 0-1016 0-1617 0-1930 0-1595 0-0951 0-0471 0-0423
26 0-0743 0-0966 0-0949 0-1587 0-1998 0-1723 0-1049 00621 . 0-0464
2-8 0-0608 0-0851 0-0880 0-1543 0-2048 0-1844: 0-1149 0-0573 0-0505
3:0 0-0498 0-0747 0-0809 0-1487 0-2080 0-1958 0-1249 0-0626 0-0547
32 0-0408 0-0652 0-0739 0-1421 0-2095 0-2063 0-1351 0-0680 0-0590 -

34 0-0334 0-0567 0-0671 0-1350 0-2095 0-2159 0-1452 0-0736 0-0634
3-6 0-0273 0-0492 0-0607 0-1274 0-2081 0-2246 0-1554 0-0794 0-0679
3-8 0-0224 0-0425 0-0545 0:1195 0-2054: 0-2324: 0-1655 0-0853 0-0725
4-0 0-0183 0-0366 0-0488 0-1115 0-2016 0-2391 0-1755 0-0913 0-0771
4-2 0-0150 0-0315 0-0436 0-1036 0-1969 0-2447 0-1854 0-0975 0-0819
4-4: 0-0123 0-0270 0-0387 0-0958 0:1912 0-2493 0-1951 0-1038 0-0867
4-6 0-0101 0-0231  0-0343 0-0882 0-1849 0-2529 0-2046 0-1102 0-0917

4-8 0-0082 0-0198 0-0303 0-0809 0-1780 0-2555 0-2139 0-1167 0-0967
5 0-0067 00168 0-0267 0-0739 0-1707 0-2571 0-2228 0-1234. 0-1018
6 0-0025 0-0074 0-0136 0-0451 0-1311 0-2516 0-2620 015677 0-1289
7 0-0009 0-0032 0:0066 0-0258 0:0936 0-2285 0-2808 0-1932 0-1584.
8 0-0003 0-0013 0-0031 0-0141 0-0630 0-1953 0-3043 0-2283 0-1903
9 0-0001 0-0006 0-0014 0-0074: 0-04.04: 01586 0-3056 02615 - 02244
10 0-0000 0-0002 0-0006 0-0038 0-0249 0-1233 02950 0-2913 0-2608
11 0-0000 0-0001 0-0003 0-0019 00148 0-0923 0-2751 0-3165 0-2991
12 0-0000 0-0000 . 0-0001 0-0009 0-0086 0-0668 0-2486 03359 0-3391
13 0-0000 0:0000 0-0001 0-0004: 0-0048 00469 0-2185 0-3489 0-3805
14 0-0000 0-0000 0-0000 . 0-0002 0-0027 0-0320 01871 035652 0-4228

15 0-0000 0-0000 0-0000 0-0001 0-0014 0-0214 0-1564 0-3549 0-4667
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> 64 mutants into further classes, e.g. 65-128, 129-256, 257-512 mutants, etc., would
involve an-impracticable amount of arithmetic. An attempt was therefore made to find
asymptotic formulae for p, or P, valid for large values of m. We have not succeeded in
finding explicit formulae, but have obtained some information on the form of the function.
If we consider P, as a continuous function of the two variables » and m, then for values
of r>1 we have approximately P,— P,_;=0P,/or. Thus equation (21) approximates to

op, 7\ oP ' :
e R B 24
om ! (] l-m> or 0 : (24)
which is satisfied by Po=1 (;%—log m), (25)

where F is any function. : .
In Fig. 1 we have plotted P, (derived from Table 2, i.e. based on the recurrence relation)
against (v/m—log m) for r=8, 16, 32 and 64, using five values of m (viz. 4, 6, 8, 13, 15)

10T T T T T T T 7T T T T T T T 1

06 -

04 |

02

Lol ] 1 ] ] ] I ] | ] 1 1
2 4 6 8 10 12 14
rim-—log m

Pig. 1. P,, for different » and m, is a fanetion of 7/m ~log m. The points are plotted for
r=8, 16, 32 and 64, and with m =4, 6, 8, 13 and 15.
selected so that the twenty points are conveniently spaced. It is seen that the points lie
quite well on a single curve, showing that these values of 7 are large enough for equa-
tion (24) to be a satisfactorily close approximation to equation (21). The smooth curve
in Tig. 1 is thus a graph of the function # which enters into equation (25).

Tor any given value of m, (r/m—logm) is evidently distributed in a skew distribution
about a median 1-24. We have found by trial that the derived variate (#/m —log m +4-5)~1
is distributed in a distribution rather closely approximating to a Gaussian distribution of
standard deviation 0-086. This is shown by the closeness with which the points in Fig. 2
lie on a straight line. The points in Fig. 2 are derived from those of Fig. 1 by transforming

. . ' . 1 fv=5 .4 .
the ordinates to probits, defined by the relation J@n e~ dy=P,, where y is the
: ol
probit corresponding to P,. (Tables of probits are given in Fisher & Yates, 1938.) Also,
19-2
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the abscissae are transformed to values of (1/m—logm+4-5)-1. Tig. 2 shows that,
approximately, . ‘
1 o , 11-6

p= | 0-174) [ 0-086 = 2402 (26)
r{m—log m+4-5 r/m—log m--4-5
is a normal deviate. o

We conclude, in this semi-empirical manner, that when the spontaneous mutation
theory is to be compared with experiments falling outside the scope of Table 2 (i.e. experi-
ments in which cultures containing more than 64 mutants are frequent), it will be satis-

. 11-6
factory for practical purposes to suppose #=|-——————-——2:02] to be normally
* o . o rfm—log m+45
7 1 ¥ l |
o m=4
6+ ]
A m=6
X m=38
=13
- ©m -
+ m=15
£
o
a
4 - \ —
El ]
2 I [ l [ N
0 01 02 03 - 0-4 0-5

1
r/m—log m+-4-5
Tig, 2. 1(rjm ~log m +4-5) is distributed in an approximately normal distribution. The
points are plotted for r=8, 16, 32 and 64, and with m =4, 6, 8, 13 and 15.
distributed with unit variance about the value 0. 7 is the number of mutants in an

individual culture, m is the mean number of mutations per culture in the batch of parallel
cultures.
The median of the distribution satisfies the relation

e 2:02=0, ie. abthe median 'r/')ﬂ —log m=1-24. (27)‘

r/m—log m 445
This equation provides a means of making a first estimate of m from the count of the
number (7) of mutants in the median culture of the batch.
The quartiles of the distribution (i.e. values of » making P,=0-25 or 0-75) satisfy the
relations:

at quartiles; rfm—logm=—02 and 7/m—logm=4-1, (28)
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which relations may be used as a first test of whether the splead of an experimental
distribution is comparable with the theoretical spread.

All the relations in this section ave approximations, to be used only when dealing with
experiments which lie outside the scope of Table 2. The approximation should not be used
for the extreme ends of the distribution, e.g. for values of P, exceeding 0-95 or less than 0-05.

THE BSTIMATION OF MUTATION RATE FROM EXPERIMENTAL OBSERVATIONS
m from the-mean number of mutants per culture
As shown by Luria and Delbruck, the mean and variance of the distribution can be simply
calculated, without knowing the distribution p,, as follows:

While the culture grows from n, to n,+dn,, the mean number of mutations will bhe
(mfn) dny (cp. equation (4)), the actual number being distributed in a Poisson distribution
about this mean with variance also (m/n) dn, (since the variance of a Poisson distribution
is equal to the mean). The contribution to the final number of mutants (when the culture
size is n) will be n/n, mutants for each mutation. Thus the contribution to the final number

. _— 7 m . . ‘n\2m |
of mutants will be distributed about a mean P dm, with a variance. (i) — dny. Thus

7
1
the mean of the required distribution is

_ N oam ’
T —clnl =m log n, : (29)
IRCRG

and the variance of an individual determination of » will be

n\2m '
o?=| (=) —dn,=mn* _ (30)
1\Ry) n

We can confirm that our distribution p, yields the same mean and variance. The mean is
F=Xrp,.
" - - e . z  a? _
Sincep, is the coefficient of 2" in the expansion of e=™exp | m 13 + 53 + ... ]| (equation (15)),
. e

and since ¢, =¢"p,, we have

x? .
1
z ¢ f«exp [m (1 5ts 3Jr )] ‘ (31)
Differentiating
Zrarlg, =m 1+ +L‘,+ exp Am 2y i +.)]. (32)
" 23 4 1.2 2.3
1.1 1 1 1 i
Insutmw z=1, and putting 5—[—~+ —}—~—-*1oD 5 and - 75 2 3 ..=1, we have

Fe=2rp,=e"m X rq,=m log n.

Again, multiplying (32) by «? and differentiating,

. . , 22 o8 1w
}.,9'(1'—}—l)quf:In/z,{(a}—l—a;‘&_g_xd+,..)+77z(%+%+...)(—2-+7+ )}exp

Inserting z=1, S (5 +1) g, =me™ (n-+m log?n)

o

@ + I + ’
_m, T gst )|

2o (1) p, = mn+m? log? n.

* But see Appendix: the correct value is ¢®==2man.



276 Distribution of numbers of mutants in bacterial populations
Now the variance o=y —F)2p, =202, — 27 %0 p, +7 2, '

=2 (r+1) p,—7—72 ‘
Thus o?=mn—m log n, i.e. o2=mn since n> 1.

Since 7=m log n, a possible method of determining m (and hence the mutation rate)
experimentally would be to divide by logn the mean number of mutants per culture
experimentally determined in a batch of N parallel cultures. However, on examination
1t appears that the precision of the estimate of m given by this method does not increase
with increase of N. Tor it is evident that the total numbers of mubants in batches of
N parallel cultures each of size n will be distributed (from batch to batch) in much the
same way as the numbers of mutants in parallel cultures of size nN. The mean number of
mutations in a culture of size nN will be mN (since the mean number of mutations is
proportional to the size of the culture, cp. equation (3)), and hence by application of (30)
the variance of the number of mutations in cultures of size n¥ is miN N =mnN? Thus
the total number of mutants in a bhatch of N culbures of size n is distributed from batch to
batch with a variance mnlN2. A fraction 1/N of this total number (i.e. the mean number
per culture derived from a count of N cultures) is therefore distributed with variance man.

Thus we see that the variance of the mean number 7 of mutants in N' cultures is no smaller
than the variance of the number of mutants in an individual culture, which shows that
however many cultures are averaged, no improvement in precision is obtained over the
use of a single culture selected ab random. Consequently, the mean number of mutants per
culture is an extremely inefficient statistic from which to calculate the mutation rate. If,
nevertheless, this method of estimating an is employed, the variance (¢2,) of the estimate
of m will (from (29) and (30)) be

i

(log n)2* . (33)

independent of the number N of cultures averaged.

m from proportion of cultwres without mutants
In view of the unsuitability of 7 as a means of estimating m from numerical data, Luria
and Delbruck proposed its estimation by equating e¢™ to the proportion of cultures
_ experimentally determined to be without mutants. In a batch of N parallel cultures, in
which the mean number of mutations is m per culture, the expected number of cultures
without mutation is Ne-, the actual number being distributed about this mean in a
binomial distribution having a variance N ¢—m (1—=e=™). Thus the variance of the estimate

. . dm . . .
e™1se ™ (1 —e™)/N. Since =D —¢™, the corresponding estimate of m has a variance
d(e™m
(o%,) which is ¢2™ times as great, i.e.
9 em—]
Om= N (34)
Thus the standard error (o,,) in the estimate of m is given by
2 ] fem—] ’
o ¢
my . (35)
m) N\ m?

o, /m thus varies with m. It has a minimal value when = 1-594, when a fraction 0-2032
of cultures have no mutants. At m=1-594, (o, /m)? takes the value 1-644/N. At small or
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large values of m (e.g. when the fraction of culbures without mutants exceeds 0-9 or is less

| ; . e o . T
than 0-01), the value of (o, /m) is much increased. Tig. 3.4 shows graphically 77';—”,\/1\7 as
a function of m.

The low precision at small values of m is to be attributed simply to the fact that an
experiment in which the great maj ority of the cultures have no mutants does not provide
much precise information about the mutation rate. The reduced precision at high values
of mn is, however, o be ascribed to the fact that this method of determining m does not

3 ! lllllHl I llllllll I Illlllll T TTTT

al)l\/‘l\r/ m

0 bbbl Lo Ll L L1
01 1 10 100 1000
N m

I'ig. 3. The precision of the estimate of m derived by various methods: 4, the method of the proportion of
cultures without mutants; B, the method of the median; ¢, the method of § [x¢]=0; D, the method of
maximal likelihood. . ’ :

malke full use of the experimental data, and in these cases more suitable methods, which
we shall describe, enable & more precise estimate of m to be made from the same data,

- from the median
When the mutation rate is to be deduced from an experiment in which all, or nearly all,
the cultures had mutants, so that the method Just discussed is inapplicable, a very
convenient method is to deduce m from the median of the distribution. The counts of the
numbers of mutants in N parallel cultures are arranged in ascending order, and the middle
one selected. The count in this culture is an estimate of 7o, the median of the distribution
of r. Bince we know that (approximately) the derived variate

a . _
| ith a=11-6, b=4-5, ¢=9202 36
x (7* Jim —Tog m b c) with @ 6, 5, ¢ (36)
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1s normally distributed about median 0, it follows that

O logm="—b=194 (37)
m ¢
This equation enables an estimate of m to be made from an experimentally determined
value of 7y. With its aid Table 3 has been constructed, which enables m to be obtained for
any value of 7, up to 4400. While the derivation of m from the median is not the most
efficient way of utilizing the experimental data from a statistical standpoint, it is the
quickest satisfactory method, and is useful for making a preliminary estimate even if
a more elaborate method is to be employed in making the final estimate.

Table 3. Prelominary estimation of m from median value of »

Thus if the middle culture of the series has 50 muatants, interpolation in the table hetween 7o =492 and
79 =558 gives ryfm =381, so that m =50/3-81 =13-1. This is the mean number of mutations per culture.

79 7ot o rolm g rofm 74 Tofm
14 1-3 15-3 2:9 117 4-5 787 61
1-6 1-4 17-4 30 132 4-6 884 6-2
1-9 15 19-9 31 150 47 993 63
2-3 1-6 22-7 32 169 4-8 1115 64
27 1.7 25-9 3-3 190 49 1251 65
3-2 1-8 29-5 34 215 50 1404 6-6
37 1-9 335 35 242 51 1575 67
4-3 2:0 38-1 3-6 273 52 1767 6-8
50 21 43-3 37 307 53 1981 69
57 2-2 49-2 3-8 346 54 2221 70
6-6 2:3 55-8 39 389 55 2490 71
77 2-4 63-2 4-0 438 56 2791 7-2
88 2:5 71-6 4.1 493 57 3127 7-3
10-1 26 81-1 4-2 554 58 3503 74
11-6 27 917 4-3 623 59 3924 75
13-3 2-8 104 4-4 700 6-0 4395 7-6

The precision of an estimate of ym made in this way from counts of N cultures may be
determined by calculating g,,/m. We shall make use of the approximate result that » is
distributed in a normal distribution with unit variance. The probability of « lying between

1 2 i 1 (= ..
¢4 dy, The probability of its lying between 0 and z is ——f e g,
J@m) o yOLRELme J@m o
and for observations in the neighbourhood of the median (z2<1) we may write this as

z v 1 x N . e . . . (1 @
Jn) Thus (—2— _F.:/(—Q_w—)) is the probability of getting an observation <z, and <§—l——_\} ( zﬂ))
is the probability of getting an observation >z. Thus the probability that, of N =2s+1
observations, s shall be <, s shall be >, and one shall be hetween x and z+dw is
(providing # is in the neighbourhood of the median)

(23+1)!(1 @ )8(1' o ))S‘\/cl:v (23+1)1<, 2‘@2)8‘ dw

St et en) e ven) JenT @ sty Jom

for s> 1. Thus the median value of a set of N =92s+1 values of z is distributed about =0

zand z+dxis

kis

. . o
with variance — =
- ds

Q—N—.
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It follows that if equation (37) is used to deduce from an experimentally determined
median value 7, an estimate of m, then this estimate will be subject to a variance

2%\7 / (a@i) “, the suffix 0 denoting evaluation at the median. Differentiating (36),
M/

z  (z+4c)? (1=0 m) x4c d z+
E?_:(b }c)? (1 b+log 177)_}_‘_]~£’:(a;+0)2 4 ‘}_Eﬁc_, (39)
a’)n’ an . e W m

where d=(1~b+logm)/a. Hence at the median z=0, ( aj) :i (cd+1). Thus the
0

om
variance o5, of the estimate of m derived from the median is given by
Ty 221 i S (afc?)? _1 57r (40)
17 N (1+afc—b+logm)® - N ¢? (ed+1)2’

or, inserting the values of a, b, ¢ from (36),

)Pl 1m0 |
( m) TN (2:24 +log m)?’ (41)

Fig. 3B is a plot of (%’?’l) /N against m as given by (41). Having used Table 3 to make an

estimate of i from the observation of the median value of 7, Fig. 3 B is consulted to obtain
the standard deviation to be ascribed to the estimate of m.

m from S [z]=0
An alternative method of estimating m from experiments in which all or nearly all of
the cultures have mutants is the following. Since # is distributed approximately normally
about the value =0, the mean value of « is zero. An estimate of m from a set of N
observations can therefore be made by finding that value of m which malkes

G o a .

S [llr] =8 [m:f@)m - C] ={ , (42)
the summation being over the N experimental observations. In using this method a first
estimate of m is made by the median method. Inserting this value of m into (36), each
experimental value of 7 is converted into a value of @, and the sum § [] formed. A series
of adjacent values of m are then tried, and the value of m which makes S [#] =0 found
(e.g. by plotting S [#] against m). .

The estimate of m obtained in this way is a little more precise than that based on the
median. The mean S [z]/N of a batch of N independent values of # will be distributed
(from batch to batch) with variance 1/N ahout a mean zero. Suppose that its value for
a particular batch is 8, so that

S [00] = N3,

If m+8,, is the estimate of m derived from this particular batch (8, being the deviation
between the estimated and true values of m),

S [% —l-—a}i 87"] ={).
- Om
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Thus 3§, 5 [8;/ oml _ = —& or approximately §,, B [a%J = —0, where we have replaced the
mean value of dx/0m for the set of N observations by the e%pectatwn I [8 J of aa “
om m’

Now from (39) we have

or 1 L o
5 {22+ (20d -+ 1)+ c®d -+ c},
and » being normally distributed with unit variance about mean zero,

L a?}=1 and £ [x]=0.

Thus : ol _1, 2) 1 ol

Thus B [81)1] m {d (14 +d},
: —md

and so RES me

d (1+c)+c”

The variance of 8 from hatch to batch being 1/N, we obtain for the variance(a,,2) of m the

relation
Oy 2 1 1 )
(m) TN{d (It e (43)
with ¢=11-6, b =45, ¢=2:02, d=(1—b +log m)/a.
A plot of J.K/N against 7 as computed by this formula is given in Fig. 3C. Having
m

derived m by the method deseribed in this section, the standard deviation to be ascribed
to it is read from Fig. 3C.

Mazvmal likelihood method: large counts

None of the methods we have so far described is fully efficient statistically. At the
expense of somewhat more laborious computation a fully efficient estimate of the mutation
rate may be made by employing the method of maximal likelihood. We give two solutions:
one for experiments which fall within the range of Tables 1 and 2, i.e. in which most of the
cultures have fewer than 64 mutants, which is set out in the next section, and one for
experiments falling outside the range of Tables 1 and 2, and for which the approximation
that  is a normal deviate is employed, which is set out in the present section. :

The probability that the number of mutants shall lie between » and r+dr is given
approximately (for 7 not too small) as

7(;—”—) gy = :/é;;j g—iat %:: dr=fdr Fsay) ) (44)
Thus ’ Zl%b logf= jc?;{z g:b 37827)010/ % (45)
Now m:(mgm—c) with a=116, b=45, c=2-02, " (46)
and by differentiating we find
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where d=(1-b+log m)/a. (48)
; ‘

Thus ;%:E{—m @402 d—z (B40)+2 @+0) d+ 1}. (49)

- Now L, the log likelihood, is (apart from irrelevant terms) S [log /7], the summation being
for the N observations of r, and the maximal likelihood condition is
0-gr=s|5L|.
dm fdm
ie. S [z (z+c)? d+w (z+0)—2 (2+4c) d—1]=0. (60)
The routine for applying this method is as follows. Timploying the preliminary estimate
of m given by the median method, (48) is used to caloulate d, and then (46) is used to
calculate a value of # from each of the NV experimental observations of ». For each of these
N values of « the expression
z(z+e)d+a (x+c)—2 (x+c)d—1
is evaluated and the N quantities added. The sum is similarly evaluated for several

adjacent values of m, and by plotiting against m (or otherwise) the value of m which satisfies
(60) is deduced.

The variance to be attached to the maximal likelihood estimate of a parameter m is
given by Fisher’s formula (cp. e.g. Fisher, 1938)

2 1
v O = N2’ (51)
T dF\E. : 1@y. ‘
62 = S 2 f{-=—). E , using (49),
where 1=1 [( 7 clm) } 1s the expectation of ( Yam) Tence, using (49)
om? =B [{a%d+a? (20d + 1)+ (Bd +c— 2d) — (2ed + 0
=d? I [5]+ (6c%d% + 6¢d — 4d% +1) B [24]
+ (P + 263 —~ 12¢%d% — 12¢d + 4d2 + 62 — 2) B [22]
+{4c2d? - ded +1) ' :
+terms involving odd powers of z.

Now it is readil shown that z being distributed normall y about zero with unit variance
o . 3
b I_.’l)”’] vanishes for odd n, and

B9 =E [2*=1, E[2%=3, I [25]=15.
Inserting these values in (52) we obtain ‘

im?=d? (c*+102 +7) +d (26% +10¢) + (c+2),

) that I ~__1_ — L e 5
s0 that (7n> TN (A 10 +T) +d (263 +100) + (*42) 09
with a=11-6, b=45, =202, d=(1—b+log m)/a. ‘

The part of Fig. 3D to the right of m=10 is a plot of (%") VN against m. Having

determined the maximal likelihood estimate of m, as described in this section, the stand
deviation to attach to it is read off from Fig. 3 D.

ard
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Mazimal likeliliood, method ! smaller counts
In this section we describe the method of arriving at the maximal likelihood estimate of
m {from an experiment falling within the scope of Tables 1 and 2; i.e. one in which the
majoriby of cultures have fewer than 64 mutants. :
P, 18 the probability of a culture having » mutants. The log likelihood of a set of N values
of 7 is (apart from irrelevant terms)
] I " A
L= [log p,],
.S denoting summation over the N experimental values of ».
The maximal likelihood value of m is that satisfying
_dL g 1 dp,
==y e,
dm pydm

Now from equation (11)

mi y © i1 mi
L dp, & g ( " m,)
7 )

o
pp= %0, e — = —
P g=t T gV dm ;I

(G- 4!
Lldp, t,—p,

that == ) H.
50 bha podm - p, (54)
where f= %0, (e m . (55)
Togm M (71!
Thus the maximal likelthood estimate of m is that satisfying
g [’;—"_P"J =0, (56)
Py

t, has been computed for a range of values of m exactly as described earlier for 7, and
in Table 4 values of (t,—p,)/p, are listed for a range of values of m and for the same
grouped ranges of r as were used previously. :

The method of estimating m is therefore the following. A preliminary estimate of m is
obtained either by the median method or by equating e~ to the proportion of cultures
without mutants. Table 4 is entered at the value of m nearest to this preliminary estimate,
and a value of (¢, —p,)/p, read off for each of the N experimental values of 7. The N values
are summed. The procedure is repeated for several adjacent values of m, and thence

. . . L L t—p,
(graphically or otherwise) the value of m inferred which would make S [LL =0.
' Dy

The variance of this maximal likelihood estimate of m is given by the relation

' o2 1 fdp Nt (= )R
where ¢= X ~(~—]’ =L-—~—(’ P) .

2

O™ = Ny’ r=0 Pp \dm, Pr
2 1 1 ‘ '
Thus (c@) TN =) "
" N 777’22,@1:&),
Py

2 here means summation over all values of » from 0 to infinity, and is to be distinguished
from §, meaning summation over the N experimental observations.
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£, - 9, [o
Table 4. =Lt 4pq N
Dy m
This table is used in estimating mutation rate by the maximal likelihood method.
fo=po = -1 for all values of .
Do
mN\7 1 2 B4 5-8 9-16 17-32 3364 > 64 N it
0-05 19-000 19-723 20-019 20-179 20-211 20-176 20-124 20-057 4-527
0-10 9-000 9698 9-998 10-166 10-206 10-174 10-124 10-057 3:239
0-15 5667 6-34.1 6-644 6-821 6-868 6-839 6-790 6723 2674
020 4:000 4652 4057 5142 5196 5171 5123 5057 2:341
0-25 3-000 3-632 3939 4-130 4-191 4170 4-123  4-067 2-116
0-30 2-333 2:046 3-254 3452 - 3-519 - 3501 3456 3-390 1-951
0-35 1-857 2-451 2-760 2-964 3-038 3-023 2:979 2:914 1-824.
0-40 1-:500 2-077 2-386 2-596 2676 2-665 2622 2557 1722
045 1-222 1-783 2092 2-307 2-393 2-386 2-344: 2-279 1-638
0-50 1-000 1-545 1-855 2-075 2166 2162 2-121 2-057 1-568
0-55 0-818 1-349 1-658 - 1-882 1-979 1-978 1939 1-875 1-507
0-60 0-667 1-184 - 1.492 1-720 1-822 1-825 1-787 1-723 1-455
065 0-538 1043 1350 1582 1689 1695 1658  1.505 1.409
0-70 0429 0-920- 1-227 1-462 1-574 1-584 1-548 1-485 1-368
075 - 0-333 0-813 1119 1-357 1-474 1-487 1-452 1-300 1-332
0-80 0-250 0-719 1-023 1-264 1-386 1402 1:369 1307 1-299
0-85 0-176 0-634. 0-937 1-181 1-308 1-327 1-295 1-233 1-269
0-90 0-111 . 0559 0-860 1-107 1:237 1-259 1.229 1-168 1-242
0-95 0-053 0491 0-790 1-039 1-174: 1-199 1-170 1-109 1-217
1.0 0-000 0-429 0-727 0-978 1-117 1-145 1117 1-:057 1-194
1-2 -0-167 0-228 0-520 0-777 0-931 0971 0-948 0:890 1-118
14 - 0286 0-080 0-364 0-627 0-793 0-845 0-828 0-771 1-059
1-6 -0-375 -0-034 0-243 0-508 0-686 0-749 0-736 0-682 1-012
18 -0444  —0125 0144 0411 0599 0672 0665 0612 0973
20 -0500  -0-200 0063 0330 0526 0609 0608 0557 0940
22 0545 -0262 -0-007 0260  0-464  0-556 0560  0-511 0-913
24 ~0-583 -0-315 -0-066 0-200 0-409 0-510 0-520 0-473 0-888
2:6 -0-615 -0-361 -0-119 0-147 0-362 0-471 0-486 0441 0-867
2-8 -0-643 -0:401 —0-164 0-099 0-319 0-436 0-456 . 0-413 0-848
3:0 -0-667 —0-436 -0-205 0-057 0-280 0-404: 0-430 0-390 0-831
3-2 -0-688 —0-467 -0-242 0-018 0-245 0-376 0-407 0-369 0-816
3-4 -0:706  -0495 -0275 -0-017 0-213 0-350 0-386 0-350 0-802
3-6 ~-0722 - 0520 -0-305 -0-050 0-183 0-326 0-367 0-334 0-789
38 -~ 0-737 - 0542 -0-333 -0-080 0-155 0-304: 0-350 0-319 0777
40 -0-750 ~0-563 -0-358 -0-107 0-129 0-284 0-334 0-305 0-766
42 -0762  -0-581 -0381 -0133 0105 0264 0320  0-203 0756
4d  -0773  -0598 -0402 -0-157 0082 0246 0306  0-282 0747
4-6 -0-783 ~0-614 —0-422 -0-179 0-061 0-229 0-293 0-272 0-738
4-8 -0-792 -0-629 - 0441 ~0-200 0-041 0-213 0-282 0-263 0-730
50 - 0-800 - 0-642 —0-458 -0-220 0-021 0-197 0-271 0-254 0-722
6 ~(0-833 ~0-697 -0-530 - 0-304 -0-062 0-130 0-223 0-219 0-690
7 -~ 0-857 -0-737 -0-584 -0-369 ~(-128 0-073 0-184 0-194 0-665
8 -0-875 -0-768 ~0-626 . -0422 -0-184 0-025 0151 0-174; 0-644
9 ~(-889 -0:792 -0-660 —0-465 ~0-231 -0-016 0-121 0-157 0-627
10 -0-900 -0-812 -0-689 -0-502 -0-272 -0:053 0-095 0:143 0-613
11 -0-909 ~-0-828 ~0:712. -0-534 -0-307 -0-086 0-071 0-131  0-600
12 ~0-917 - 0-842 ~0-733 -0-561 -0-339 -0-116 0:048 0-120 0-589
13 -0-923 -0-853 -0-750 —-0-586 -0-367 -0-143 0-028 0-110 0:580
14 ~-0-929 -0-863 -0-765 -0-607 -0-393 -0-167 0-008 0:101 0-571

15 -0-933 —0-872 -0:779  -0-626 -0-416 -0-190 -0-010 0-092 0-564
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In the final column of Table 4 we have tabulated

1 ~%n N, (58)

T e T
" A/ (Z o ])7.)) )
Py

Having determined the maximal likelihood estimate of m as just described, the value of
/N [m is vead off from the last column of Table 4. These values of 0m/N/m have been
used in plotting the part of Fig. 3.D to the left of m=10. Between m =3 and m=15, the
values of o, /N /m calculated from (58) and from (53) agree satisfactorily.

SuMMARY

Statistical caleulations arve made of the distribution numbers of mutants in a culture of
bacteria in which the number of mutants increases on account both of new mutations and
of division of old mutants. In this way the largely qualitative conclusions of Luria and
Delbruck are extended and placed on a firm quantitative basis. The results of these
calculations, which enable the mutation rate to be inferred from experiments with parallel
culbures, are presented in the form of tables. Statistically efficient methods of using these
tables are discussed. :
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APPENDIX. (By C.A.C.)

(1) It has been suggested that a table of the individual coeflicients C; , introduced in
equation (7), and which give the expansion of ¢, in powers of 1, might be useful. Such
a table, for » <10, is shown below.

sl ¥ A il
Table of C; , A
m?

”
According to equation (7), ¢, X C; , —
g=1

e
Al
"N 12 3 4 5 6 7 8 9 10
2
1 ¥
1
2 @
1
3 T
1
4 T
54 i .
J 3 EE
+ 1 5
[§} Py ’u_,(x'
1 a5 1
7 TE 576 128
8 A 197 i e
78 THE8 TEE 56
9 1 807 ed 1 1
90 Bi84 TEE 76 FIT
10 1 1670 5960 1681 1169 5 L8 1
d 710 76600 TOSBGT 34560 1600 E8E 1T 1684

(2) It should perhaps be pointed out that the replacement in (3) of n—1 by » is an
approximation whose effect is quite negligible provided that »<n, as occurs in all
experiments. In fact, even for 7 of the order of nt, the values of ¢, arve seriously in error.
As a result of this, and of the fact that it allows » to exceed n (which is manifestly

impossible since 7 is the number of mutants and » is the total number of bacteria), the
~ generating function (15) actually gives an infinite value for all the moments. These two
difficulties have been removed in a development of this theory, to be published by Mr
D. G. Kendall, of Oxford. But unfortunately his more strictly correct generating function
cannot be expanded with any ease to determine the ¢,. Except for large » or small #,
however, it differs insignificantly from our (15).

(3) Mr Kendall has kindly pointed out to me that the argument in (31) and (32),
which was copied from Luria and Delbruck, is not quite valid. For in (32) the complete
series 5+t s not convergent when z =1, and in order to get an expression for
the mean value and the variance it was necessary artificially to curtail this series by
truncating it at its term a™/n. This device is not a valid procedure, and it appears that
although there is no change in the mean 7, the variance ¢% of an individual determination
of r requires to be multiplied by 2, so that the correct relation o2 == 2mn.



